Rough Morphology Hybrid Approach for Mammography Image Classification and Prediction

نویسندگان

  • Aboul Ella Hassanien
  • Ajith Abraham
چکیده

The objective of this research is to illustrate how rough sets can be successfully integrated with mathematical morphology and provide a more effective hybrid approach to resolve medical imaging problems. Hybridization of rough sets and mathematical morphology techniques has been applied to depict their ability to improve the classification of breast cancer images into two outcomes: malignant or benign cancer. Algorithms based on mathematical morphology are first applied to enhance the contrast of the whole original image; to extract the region of interest and to enhance the edges surrounding that region. Then, features are extracted characterizing the underlying texture of the regions of interest by using the gray-level co-occurrence matrix. The rough set approach to attribute reduction and rule generation is further presented. Finally, rough morphology is designed for discrimination of different regions of interest to test whether they represent malignant cancer or benign cancer. To evaluate performance of the presented rough morphology approach, we tested different mammogram images. The experimental results illustrate that the overall performance in locating optimal orientation offered by the proposed approach is high compared with other hybrid systems such as rough-neural and rough-fuzzy systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Method for Mammography Mass Detection Based on Wavelet Transform

Introduction:  Breast  cancer  is  a  leading  cause  of  death  among  females  throughout  the  world.  Currently,  radiologists are able to detect only 75% of breast cancer cases. Making use of computer-aided design (CAD)  can play an important role in helping radiologists perform more accurate diagnoses.   Material and Methods: Using our hybrid method, the background and the pectoral muscle...

متن کامل

H-BwoaSvm: A Hybrid Model for Classification and Feature Selection of Mammography Screening Behavior Data

Breast cancer is one of the most common cancer in the world. Early detection of cancers cause significantly reduce in morbidity rate and treatment costs. Mammography is a known effective diagnosis method of breast cancer. A way for mammography screening behavior identification is women's awareness evaluation for participating in mammography screening programs. Todays, intelligence systems could...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Mathematical Morphological Approach for Mammogram Image Segmentation and Classification

This paper presents the mathematical morphological and rough set based approach in detection and classification of cancerous masses in MRI mammogram images. The main objective behind this approach is to build a CAD system with good accuracy and computational speed in detection of cancerous masses compared to the existing system. The ROI(Region of Interest) is segmented using Graph cut method.an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International Journal of Computational Intelligence and Applications

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2008